Difference between revisions of "iMX8M Industrial Environmental chamber testing"
(31 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<div style="float:right">__TOC__</div> | <div style="float:right">__TOC__</div> | ||
− | On this page environmental stress testing results of iMX8M Industrial Development Kit are displayed. Detailed instructions how to setup | + | On this page environmental stress testing results of iMX8M Industrial Development Kit are displayed. Detailed instructions how to setup kits are also shown. |
== Hardware configuration == | == Hardware configuration == | ||
Line 31: | Line 31: | ||
** CM-276NF WiFi & Bluetooth Module - industrial temperature range (-30°C to +85°C) | ** CM-276NF WiFi & Bluetooth Module - industrial temperature range (-30°C to +85°C) | ||
<br /> | <br /> | ||
− | All of the tested modules used standard configuration of | + | All of the tested modules used standard configuration of iMX Development Baseboard with extended temperature range (-20°C to +70°C). The majority of tested kits used the standard heatsink sized 25x25x25mm, which is included in every development kit package, thus showcasing that this standardised heatsink performs even in very harsh conditions. One of the kits was mounted with a larger heatsink and one of the standard heatsinks was mounted with an active fan to test its impact on the performance.<br /> |
To test the performance of the video capturing capabilities of the development kits under extreme conditions, NXP MIPI-CSI and Digilent MIPI-CSI cameras were included in the tested setups. | To test the performance of the video capturing capabilities of the development kits under extreme conditions, NXP MIPI-CSI and Digilent MIPI-CSI cameras were included in the tested setups. | ||
<br /> | <br /> | ||
The setup in the environmental chamber:<br /> | The setup in the environmental chamber:<br /> | ||
− | |||
− | |||
[[image:iMX8M_Industrial_Development_Kits-Enviromental_chamber_overview_with_description.jpg|800px]] | [[image:iMX8M_Industrial_Development_Kits-Enviromental_chamber_overview_with_description.jpg|800px]] | ||
Line 46: | Line 44: | ||
'''1x iMX8M Industrial Development Kit [setup no. 4] in [[iMX8M Industrial Max|Max configuration]] and Industrial temperature range<br />CPU and memory stress testing''' | '''1x iMX8M Industrial Development Kit [setup no. 4] in [[iMX8M Industrial Max|Max configuration]] and Industrial temperature range<br />CPU and memory stress testing''' | ||
− | * 1 thread of extensive Memory stress test | + | * 1 thread of extensive DDR4 Memory stress test |
* 1 thread of CPU stress test | * 1 thread of CPU stress test | ||
* sending HDMI Output to external monitor | * sending HDMI Output to external monitor | ||
* all the messages were displayed on the serial console connected via Micro USB cable | * all the messages were displayed on the serial console connected via Micro USB cable | ||
− | * firmware running from eMMC | + | * firmware running from eMMC Flash memory |
* Ethernet cable connected to network switch placed outside of the chamber | * Ethernet cable connected to network switch placed outside of the chamber | ||
* 2x USB device connected and placed outside of the chamber | * 2x USB device connected and placed outside of the chamber | ||
Line 57: | Line 55: | ||
<br /> | <br /> | ||
'''1x iMX8M Industrial Development Kit [setup no. 2] in [[iMX8M Industrial Pro|Pro configuration]] and Industrial temperature range<br />CPU and memory stress testing''' | '''1x iMX8M Industrial Development Kit [setup no. 2] in [[iMX8M Industrial Pro|Pro configuration]] and Industrial temperature range<br />CPU and memory stress testing''' | ||
− | * 1 thread of extensive Memory stress test | + | * 1 thread of extensive DDR4 Memory stress test |
* 1 thread of CPU stress test | * 1 thread of CPU stress test | ||
* sending HDMI Output to external monitor | * sending HDMI Output to external monitor | ||
* NXP MIPI-CSI camera connected and capturing video stream | * NXP MIPI-CSI camera connected and capturing video stream | ||
* all the messages were displayed on the serial console connected via Micro USB cable | * all the messages were displayed on the serial console connected via Micro USB cable | ||
− | * firmware running from eMMC | + | * firmware running from eMMC Flash memory |
* Ethernet cable connected to network switch placed outside of the chamber | * Ethernet cable connected to network switch placed outside of the chamber | ||
* 2x USB device connected and placed outside of the chamber | * 2x USB device connected and placed outside of the chamber | ||
Line 69: | Line 67: | ||
<br /> | <br /> | ||
'''1x iMX8M Industrial Development Kit [setup no. 1] in [[iMX8M Industrial Basic|Basic configuration]] and Industrial temperature range<br />CPU and memory stress testing''' | '''1x iMX8M Industrial Development Kit [setup no. 1] in [[iMX8M Industrial Basic|Basic configuration]] and Industrial temperature range<br />CPU and memory stress testing''' | ||
− | * 1 thread of extensive Memory stress test | + | * 1 thread of extensive DDR4 Memory stress test |
* 1 thread of CPU stress test | * 1 thread of CPU stress test | ||
* sending HDMI Output to external monitor | * sending HDMI Output to external monitor | ||
* all the messages were displayed on the serial console connected via Micro USB cable | * all the messages were displayed on the serial console connected via Micro USB cable | ||
− | * firmware running from eMMC | + | * firmware running from eMMC Flash memory |
* Ethernet cable connected to network switch placed outside of the chamber | * Ethernet cable connected to network switch placed outside of the chamber | ||
* 2x USB device connected and placed outside of the chamber | * 2x USB device connected and placed outside of the chamber | ||
Line 80: | Line 78: | ||
<br /> | <br /> | ||
'''1x iMX8M Industrial Development Kit [setup no. 3] in [[iMX8M Industrial Max|Max configuration]] and Commercial temperature range<br />CPU and memory stress testing''' | '''1x iMX8M Industrial Development Kit [setup no. 3] in [[iMX8M Industrial Max|Max configuration]] and Commercial temperature range<br />CPU and memory stress testing''' | ||
− | * 1 thread of extensive Memory stress test | + | * 1 thread of extensive DDR4 Memory stress test |
* 1 thread of CPU stress test | * 1 thread of CPU stress test | ||
* sending HDMI Output to external monitor | * sending HDMI Output to external monitor | ||
* Digilent MIPI-CSI camera connected and capturing video stream | * Digilent MIPI-CSI camera connected and capturing video stream | ||
* all the messages were displayed on the serial console connected via Micro USB cable | * all the messages were displayed on the serial console connected via Micro USB cable | ||
− | * firmware running from eMMC | + | * firmware running from eMMC Flash memory |
* Ethernet cable connected to network switch placed outside of the chamber | * Ethernet cable connected to network switch placed outside of the chamber | ||
* 2x USB device connected and placed outside of the chamber | * 2x USB device connected and placed outside of the chamber | ||
Line 91: | Line 89: | ||
* standard 25x25x25mm heatsink including a fan | * standard 25x25x25mm heatsink including a fan | ||
<br /> | <br /> | ||
− | USB flash devices were placed outside the environmental chamber. All the scripts running during the test and the board setup instructions can be found in section [[#Preparing the test|How to prepare the test]]. | + | Power sources, USB flash devices, network switch, HDMI monitor and controlling PC were placed outside the environmental chamber. All the scripts running during the test and the board setup instructions can be found in section [[#Preparing the test|How to prepare the test]]. |
== Testing Results == | == Testing Results == | ||
− | The picture below shows the temperature profile during the whole testing process. The temperature gradient for the environment chamber was set to 1°C/min. | + | The picture below shows the temperature profile during the whole testing process. Humidity was not controlled. The temperature gradient for the environment chamber was set to 1°C/min.<br /> |
− | + | [[image:iMX8M_Industrial_Development_Kit-Env_chamber_temperature_profile.png|800px]] | |
− | |||
− | [[image:iMX8M_Industrial_Development_Kit-Env_chamber_temperature_profile. | ||
=== Running the development kits at -40°C – PASS === | === Running the development kits at -40°C – PASS === | ||
Line 105: | Line 101: | ||
* the first number shows current temperature | * the first number shows current temperature | ||
* the second one set temperature | * the second one set temperature | ||
− | * the last two shows | + | * the last two shows relative humidity. Humidity was not controlled during testing process. |
[[image:iMX8M Industrial Kit-Env chamber-Boards at 40°C.png|800px]] | [[image:iMX8M Industrial Kit-Env chamber-Boards at 40°C.png|800px]] | ||
<br /><br /> | <br /><br /> | ||
Line 111: | Line 107: | ||
=== Running the development kits at +85°C – PASS === | === Running the development kits at +85°C – PASS === | ||
− | Test description: The pre-set temperature profile was followed until the development kits gradually reached +85°C. The kits remained around this temperature for the duration of two hours and at the end of this whole cycle all the | + | Test description: The pre-set temperature profile was followed until the development kits gradually reached +85°C. The kits remained around this temperature for the duration of two hours and at the end of this whole cycle all the kits were running.<br /> |
[[image:iMX8M Industrial Kit-Env chamber-Boards at 86°C.png|800px]] | [[image:iMX8M Industrial Kit-Env chamber-Boards at 86°C.png|800px]] | ||
<br /><br /> | <br /><br /> | ||
Line 123: | Line 119: | ||
== PC setup == | == PC setup == | ||
− | The PC was used during test | + | The PC was used during the test to control / monitor all the kits through serial console sessions. The control computer was running Windows 10 operating system. |
=== HDMI Outputs and Serial consoles === | === HDMI Outputs and Serial consoles === | ||
− | To control iMX8M Industrial Development | + | To control iMX8M Industrial Development Kits, one TeraTerm serial console was opened for each setup. The kits were connected to the external HDMI switch to monitor HDMI outputs. |
<br /><br /> | <br /><br /> | ||
The setup of the environmental chamber cables and out-of-chamber equipment: | The setup of the environmental chamber cables and out-of-chamber equipment: | ||
<br /> | <br /> | ||
− | [[image:iMX8M Industrial Kit- | + | [[image:iMX8M Industrial Development Kit-Climate chamber overview.jpg|800px]] |
== Preparing the test == | == Preparing the test == | ||
=== Boot device and software === | === Boot device and software === | ||
− | The eMMC memory was selected as a booting device for all the | + | The eMMC memory was selected as a booting device for all the kits. Device tree files were not adjusted as the default configuration was used. The only change compared to standard software package was running the test script. In order to flash a fresh firmware into the eMMC Memory follow [[iMX8M_Industrial_Flashing_Procedure|these instructions]]. |
− | |||
− | |||
− | |||
− | |||
− | |||
=== Downloading stress test === | === Downloading stress test === | ||
− | + | Stress-ng package was selected to check CPU and memory integrity. Placing this file into the same directory where the testing script will be stored is important: | |
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
− | wget https:// | + | wget https://downloads.voipac.com/files/iMX8M_Industrial_Development_Kit/module/documents/Thermal_stress_resistance/imx8mq-voipac-peripheral-test.sh |
</syntaxhighlight> | </syntaxhighlight> | ||
=== Start CPU and memory stress test === | === Start CPU and memory stress test === | ||
− | Navigate into the directory, where | + | Navigate into the directory, where stress test feature and the testing script are stored.<br /><br /> |
− | Stress | + | Stress sequence script: |
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
− | for d in $(seq 1 1 | + | for d in $(seq 1 1 99999) |
do | do | ||
uptime | uptime | ||
Line 186: | Line 177: | ||
* the fourth parameter - SD card location | * the fourth parameter - SD card location | ||
<br /> | <br /> | ||
− | Several commands used during | + | Several commands used during environmental chamber testing are shown below: |
* iMX8M Industrial Development Kit Max: | * iMX8M Industrial Development Kit Max: | ||
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
− | ./imx8m-voipac-peripheral-test.sh -max sda1 sdb1 mmcblk1p1 | tee -i imx8m- | + | ./imx8m-voipac-peripheral-test.sh -max sda1 sdb1 mmcblk1p1 | tee -i imx8m-env-testing.log |
</syntaxhighlight> | </syntaxhighlight> | ||
* iMX8M Industrial Development Kit Pro: | * iMX8M Industrial Development Kit Pro: | ||
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
− | ./imx8m-voipac-peripheral-test.sh -pro sda1 sdb1 mmcblk1p1 | tee -i imx8m- | + | ./imx8m-voipac-peripheral-test.sh -pro sda1 sdb1 mmcblk1p1 | tee -i imx8m-env-testing.log |
</syntaxhighlight> | </syntaxhighlight> | ||
* iMX8M Industrial Development Kit Basic: | * iMX8M Industrial Development Kit Basic: | ||
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
− | ./imx8m-voipac-peripheral-test.sh -basic sda1 sdb1 mmcblk1p1 | tee -i imx8m- | + | ./imx8m-voipac-peripheral-test.sh -basic sda1 sdb1 mmcblk1p1 | tee -i imx8m-env-testing.log |
</syntaxhighlight> | </syntaxhighlight> | ||
− | The complete script can be found in [https:// | + | <br /> |
+ | The complete script can be found in [https://downloads.voipac.com/files/iMX8M_Industrial_Development_Kit/module/documents/Thermal_stress_resistance/imx8mq-voipac-peripheral-test.sh the downloads section] or down below: | ||
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
#!/bin/sh | #!/bin/sh | ||
Line 271: | Line 263: | ||
trap finish_test_now 2 | trap finish_test_now 2 | ||
− | # play a video stream | + | # play a video stream |
gst-launch-1.0 -q imxv4l2src ! autovideosink & | gst-launch-1.0 -q imxv4l2src ! autovideosink & | ||
− | # stressapptest - | + | # stressapptest - CPU threads and RAM memory threads |
if [ "${basic}" -eq "1" ]; then | if [ "${basic}" -eq "1" ]; then | ||
stress-ng --cpu 2 --vm 4 & | stress-ng --cpu 2 --vm 4 & | ||
Line 314: | Line 306: | ||
do | do | ||
− | ping -q -c1 | + | ping -q -c1 192.168.0.2 >> env-chamber-testing.log |
if [ $? -ne 0 ] | if [ $? -ne 0 ] | ||
then | then | ||
echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) ERROR: Ping failed" | echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) ERROR: Ping failed" | ||
− | |||
− | |||
fi | fi | ||
Line 363: | Line 353: | ||
=== Starting camera capture === | === Starting camera capture === | ||
==== Digilent camera ==== | ==== Digilent camera ==== | ||
− | To initiate the camera to start the | + | To initiate the camera to start the capturing of video stream, following command can be used: |
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
GST_DEBUG=GST_BUFFER:5 gst-launch-1.0 v4l2src device=/dev/video1 ! 'video/x-raw,framerate=30/1' ! autovideosink | GST_DEBUG=GST_BUFFER:5 gst-launch-1.0 v4l2src device=/dev/video1 ! 'video/x-raw,framerate=30/1' ! autovideosink | ||
Line 369: | Line 359: | ||
==== NXP camera ==== | ==== NXP camera ==== | ||
− | To initiate the camera to start the | + | To initiate the camera to start the capturing of video stream, following command can be used: |
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
GST_DEBUG=GST_BUFFER:5 gst-launch-1.0 v4l2src device=/dev/video0 ! 'video/x-raw,framerate=30/1' ! autovideosink | GST_DEBUG=GST_BUFFER:5 gst-launch-1.0 v4l2src device=/dev/video0 ! 'video/x-raw,framerate=30/1' ! autovideosink | ||
</syntaxhighlight> | </syntaxhighlight> |
Latest revision as of 14:50, 11 September 2024
On this page environmental stress testing results of iMX8M Industrial Development Kit are displayed. Detailed instructions how to setup kits are also shown.
Hardware configuration
All of the modules used standard specification except of the temperature ranges for the key components as described below:
- 1x iMX8M Industrial Development Kit in Max configuration
- i.MX 8M Quad 1.3GHz CPU - extended industrial temperature range (-40°C to +105°C)
- 4GB LPDDR4 Memory - extended industrial temperature range (-40°C to +95°C)
- eMMC 32GB - industrial temperature range (-40°C to +85°C)
- SPB228-D-3 WiFi & Bluetooth Module - industrial temperature range (-40°C to +85°C)
- 1x iMX8M Industrial Development Kit in Pro configuration
- i.MX 8M QuadLite 1.3GHz CPU - extended industrial temperature range (-40°C to +105°C)
- 2GB LPDDR4 Memory - automotive temperature range (-40°C to +95°C)
- eMMC 16GB - industrial temperature range (-40°C to +85°C)
- SPB228-D-3 WiFi & Bluetooth Module - industrial temperature range (-40°C to +85°C)
- 1x iMX8M Industrial Development Kit in Basic configuration
- i.MX 8M Dual 1.3GHz CPU - extended industrial temperature range (-40°C to +105°C)
- 1GB LPDDR4 Memory - industrial temperature range (-40°C to +95°C)
- eMMC 8GB - industrial temperature range (-40°C to +85°C)
- 1x iMX8M Industrial Development Kit in Max configuration
- i.MX 8M Quad 1.5GHz CPU - extended commercial temperature range (0°C to +95°C)
- 4GB LPDDR4 Memory - industrial temperature range (-30°C to +85°C)
- eMMC 32GB - extended temperature range (-25°C to +85°C)
- CM-276NF WiFi & Bluetooth Module - industrial temperature range (-30°C to +85°C)
All of the tested modules used standard configuration of iMX Development Baseboard with extended temperature range (-20°C to +70°C). The majority of tested kits used the standard heatsink sized 25x25x25mm, which is included in every development kit package, thus showcasing that this standardised heatsink performs even in very harsh conditions. One of the kits was mounted with a larger heatsink and one of the standard heatsinks was mounted with an active fan to test its impact on the performance.
To test the performance of the video capturing capabilities of the development kits under extreme conditions, NXP MIPI-CSI and Digilent MIPI-CSI cameras were included in the tested setups.
The setup in the environmental chamber:
Test description
Four iMX8M Industrial Development Kits (one in Max Industrial configuration, one in Pro Industrial configuration, one in Basic Industrial configuration and one in Max Commercial configuration) were running CPU and memory tests to stress out all the most significant peripherals in the whole Industrial temperature scale, ranging from -40°C to +85°C, to check the reliability and stability of the firmware and hardware design.
Configuration, software and testing threads in details:
1x iMX8M Industrial Development Kit [setup no. 4] in Max configuration and Industrial temperature range
CPU and memory stress testing
- 1 thread of extensive DDR4 Memory stress test
- 1 thread of CPU stress test
- sending HDMI Output to external monitor
- all the messages were displayed on the serial console connected via Micro USB cable
- firmware running from eMMC Flash memory
- Ethernet cable connected to network switch placed outside of the chamber
- 2x USB device connected and placed outside of the chamber
- WiFi and Bluetooth module active, connected to the antennas and running discovery mode
- large 48x48x16mm heatsink
1x iMX8M Industrial Development Kit [setup no. 2] in Pro configuration and Industrial temperature range
CPU and memory stress testing
- 1 thread of extensive DDR4 Memory stress test
- 1 thread of CPU stress test
- sending HDMI Output to external monitor
- NXP MIPI-CSI camera connected and capturing video stream
- all the messages were displayed on the serial console connected via Micro USB cable
- firmware running from eMMC Flash memory
- Ethernet cable connected to network switch placed outside of the chamber
- 2x USB device connected and placed outside of the chamber
- WiFi and Bluetooth module active, connected to the antennas and running discovery mode
- standard 25x25x25mm heatsink
1x iMX8M Industrial Development Kit [setup no. 1] in Basic configuration and Industrial temperature range
CPU and memory stress testing
- 1 thread of extensive DDR4 Memory stress test
- 1 thread of CPU stress test
- sending HDMI Output to external monitor
- all the messages were displayed on the serial console connected via Micro USB cable
- firmware running from eMMC Flash memory
- Ethernet cable connected to network switch placed outside of the chamber
- 2x USB device connected and placed outside of the chamber
- WiFi PCI Express card plugged in, connected to the antennas and running discovery mode
- standard 25x25x25mm heatsink
1x iMX8M Industrial Development Kit [setup no. 3] in Max configuration and Commercial temperature range
CPU and memory stress testing
- 1 thread of extensive DDR4 Memory stress test
- 1 thread of CPU stress test
- sending HDMI Output to external monitor
- Digilent MIPI-CSI camera connected and capturing video stream
- all the messages were displayed on the serial console connected via Micro USB cable
- firmware running from eMMC Flash memory
- Ethernet cable connected to network switch placed outside of the chamber
- 2x USB device connected and placed outside of the chamber
- WiFi and Bluetooth module active, connected to the antennas and running discovery mode
- standard 25x25x25mm heatsink including a fan
Power sources, USB flash devices, network switch, HDMI monitor and controlling PC were placed outside the environmental chamber. All the scripts running during the test and the board setup instructions can be found in section How to prepare the test.
Testing Results
The picture below shows the temperature profile during the whole testing process. Humidity was not controlled. The temperature gradient for the environment chamber was set to 1°C/min.
Running the development kits at -40°C – PASS
Test description: CPU, Memory and peripheral stress tests were running at -40°C. All the tested kits were working without errors during the whole time, even if some components used for iMX8M Industrial Development Kit Max in Commercial temperature range were only rated for the temperature range between 0°C and +95°C.
A closer image on the temperature chamber displaying the minimum temperature is shown below. These readouts are available on the display:
- the first number shows current temperature
- the second one set temperature
- the last two shows relative humidity. Humidity was not controlled during testing process.
Running the development kits at +85°C – PASS
Test description: The pre-set temperature profile was followed until the development kits gradually reached +85°C. The kits remained around this temperature for the duration of two hours and at the end of this whole cycle all the kits were running.
Switch OFF/ON test at -40°C – PASS
Test description: At temperature -40°C the development kits were switched OFF, left OFF for at least 15 minutes (to cool down completely) and then switched ON to see if they boot up without problems. Once booted up into Linux, the test script was launched to test RAM memory and all peripherals. The kits were turned OFF and ON again multiple times to see potential issues at the lowest temperature level. All of the tested setups booted up successfully.
PC setup
The PC was used during the test to control / monitor all the kits through serial console sessions. The control computer was running Windows 10 operating system.
HDMI Outputs and Serial consoles
To control iMX8M Industrial Development Kits, one TeraTerm serial console was opened for each setup. The kits were connected to the external HDMI switch to monitor HDMI outputs.
The setup of the environmental chamber cables and out-of-chamber equipment:
Preparing the test
Boot device and software
The eMMC memory was selected as a booting device for all the kits. Device tree files were not adjusted as the default configuration was used. The only change compared to standard software package was running the test script. In order to flash a fresh firmware into the eMMC Memory follow these instructions.
Downloading stress test
Stress-ng package was selected to check CPU and memory integrity. Placing this file into the same directory where the testing script will be stored is important:
wget https://downloads.voipac.com/files/iMX8M_Industrial_Development_Kit/module/documents/Thermal_stress_resistance/imx8mq-voipac-peripheral-test.sh
Start CPU and memory stress test
Navigate into the directory, where stress test feature and the testing script are stored.
Stress sequence script:
for d in $(seq 1 1 99999) do uptime echo "Test $a Test $b Test $c $d times" echo "Start stress-ng --iomix 1 -t 10 -v" stress-ng --iomix 1 -t 10 -v echo "End" echo "Start stress-ng --cpu 2 --vm 4 -t 10" stress-ng --cpu 2 --vm 4 -t 10 echo "End" echo "Start stress-ng --shm 0 -t 10" stress-ng --shm 0 -t 10 echo "End" echo "Start stress-ng --seq 0 -t 2 --tz -v" stress-ng --seq 0 -t 2 --tz -v echo "End" echo "Start Thermal zone information" stress-ng --matrix 0 --tz -t 10 --log-brief -t 10 echo "End" done
Start peripheral test
Plug the development kit into mains and connect it to the controlling PC via console. Before the first time usage of the script, permissions need to be granted by the following command:
chmod +x imx8m-voipac-peripheral-test.sh
Testing scripts command consists of the following arguments:
- the first parameter - configuration of tested development kit (Max, Pro or Basic)
- the second parameter - USB drive 1 location
- the third parameter - USB drive 2 location
- the fourth parameter - SD card location
Several commands used during environmental chamber testing are shown below:
- iMX8M Industrial Development Kit Max:
./imx8m-voipac-peripheral-test.sh -max sda1 sdb1 mmcblk1p1 | tee -i imx8m-env-testing.log
- iMX8M Industrial Development Kit Pro:
./imx8m-voipac-peripheral-test.sh -pro sda1 sdb1 mmcblk1p1 | tee -i imx8m-env-testing.log
- iMX8M Industrial Development Kit Basic:
./imx8m-voipac-peripheral-test.sh -basic sda1 sdb1 mmcblk1p1 | tee -i imx8m-env-testing.log
The complete script can be found in the downloads section or down below:
#!/bin/sh # iMX8MQ environmental chamber peripheral test mountDevice() { mkdir -p "/media/$2" mount /dev/$1 /media/$2 cat /proc/mounts | grep -F "/dev/$1 /media/$2" if [ "$?" -eq "0" ]; then echo "$2 mounted" else echo "$2 not mounted"; exit 2 fi } # prepare files cd ~/ mkdir -p env-chamber-testing/ cd env-chamber-testing/ touch env-chamber-testing.log touch cpu-temp.log basic=0 pro=0 max=0 case $1 in -basic) basic=1 ;; -pro) pro=1 ;; -max) max=1 ;; *) esac # mount devices mountDevice $2 usb0 mountDevice $3 usb1 mountDevice $4 mmc0 updateLogFiles() { # obtain board ID from IP address - be sure addresses are allocated based on MAC boardID=$(/sbin/ip -o -4 addr list eth0 | awk '{print $4}' | cut -d/ -f1 | cut -d'.' -f4 | cut -d'2' -f2); # be sure time server is running on DHCP server currentTime=`date +%Y-%m-%d.%H:%M` mv env-chamber-testing.log trx-board-$boardID-env-chamber.log.$currentTime mv cpu-temp.log trx-board-$boardID-env-cpu-temp.log.$currentTime } finish_test_now() { echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) Ctrl+C Detected: End of the test" precced=0; #kill -INT $vid_pid $str_pid $log_pid; sleep 3; test_status=`cat env-chamber-testing.log | grep -i "error" | grep -v -e "0 errors" -e "no corrected errors"` if [ -z "$test_status" ] then echo "*********TEST PASS*********" else echo "*********TEST FAIL*********" echo "List of detected errors:" cat env-chamber-testing.log | grep -i "error" | grep -v -e "0 errors" -e "no corrected errors" -e "List of detected errors:" fi updateLogFiles exit; } # kill all processes if Ctrl+C is detected trap finish_test_now 2 # play a video stream gst-launch-1.0 -q imxv4l2src ! autovideosink & # stressapptest - CPU threads and RAM memory threads if [ "${basic}" -eq "1" ]; then stress-ng --cpu 2 --vm 4 & str_pid=$! fi if [ "${pro}" -eq "1" ]; then stress-ng --cpu 4 --vm 4 & str_pid=$! fi if [ "${max}" -eq "1" ]; then stress-ng --cpu 4 --vm 4 & str_pid=$! fi echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) Starting stressapptest with PID: " $str_pid proceed=1 # create test files file1_path=`mktemp` file2_path=`mktemp` file1=`basename $file1_path` file2=`basename $file2_path` dd if=/dev/urandom of=$file1_path bs=1024 count=10000 dd if=/dev/urandom of=$file2_path bs=1024 count=10000 cp1_from="/media/mmc0/" cp1_to="/media/usb0/" cp2_from="/media/usb0/" cp2_to="/media/usb1/" #copy files in case they are missing cp $file1_path $cp1_from cp $file1_path $cp1_to cp $file2_path $cp2_from cp $file2_path $cp2_to while [ $proceed -eq 1 ] do ping -q -c1 192.168.0.2 >> env-chamber-testing.log if [ $? -ne 0 ] then echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) ERROR: Ping failed" fi cp1_done=`ps | grep $cp1_pid | grep cp` if [ -z "$cp1_done" ]; then # copy finished if cmp -s $cp1_from$file1 $cp1_to$file1; then echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) PASS: Copying file from $cp1_from to $cp1_to successful" else echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) ERROR: Difference between files on $cp1_from and $cp1_to detected" fi cp1_temp=$cp1_from # swap destinations cp1_from=$cp1_to cp1_to=$cp1_temp rm $cp1_to$file1 # remove destination file cp $cp1_from$file1 $cp1_to$file1 & cp1_pid=$! echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) Started copying file from $cp1_from to $cp1_to" fi cp2_done=`ps | grep $cp2_pid | grep cp` if [ -z "$cp2_done" ]; then # copy finished if cmp -s $cp2_from$file2 $cp2_to$file2; then echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) PASS: Copying file from $cp2_from to $cp2_to successful" else echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) ERROR: Difference between files on $cp2_from and $cp2_to detected" fi cp2_temp=$cp2_from # swap destinations cp2_from=$cp2_to cp2_to=$cp2_temp rm $cp2_to$file2 # remove destination file cp $cp2_from$file2 $cp2_to$file2 & cp2_pid=$! echo "$(date +\%Y/\%m/\%d-\%T)($(date +\%Z)) Started copying file from $cp2_from to $cp2_to" fi done
Starting camera capture
Digilent camera
To initiate the camera to start the capturing of video stream, following command can be used:
GST_DEBUG=GST_BUFFER:5 gst-launch-1.0 v4l2src device=/dev/video1 ! 'video/x-raw,framerate=30/1' ! autovideosink
NXP camera
To initiate the camera to start the capturing of video stream, following command can be used:
GST_DEBUG=GST_BUFFER:5 gst-launch-1.0 v4l2src device=/dev/video0 ! 'video/x-raw,framerate=30/1' ! autovideosink